
26 www.PowerBuilderJournal.comPBDJ volume8 issue9

Why Use an NT Service?
JP Morgan’s XML interface has to perform three core functions:

1. Process incoming XML messages.
2. Watch for state changes in the database.
3. Process outgoing XML messages.

These tasks had to be performed 24/7, without human intervention,
in a secure and reliable manner. The ideal solution was an NT service.
This could be installed on a server and configured to start as soon as the
machine booted up without the need for anyone to log on. We knew that
Microsoft had a utility, SRVANY, that would let any EXE be deployed as a
service. A bit of research showed that it would work with a PowerBuilder
application.

Writing an NT service is different from a traditional PowerBuilder
application. Services are essentially batch jobs. They have no user inter-
face, so if you need to get a message to the outside world you can’t just
pop up a message box, and they are time-driven rather than waiting for
user interaction such as mouse clicks. There are three things you need to
know about to write a service in PowerBuilder: how to use the timer
object in a nonvisual application, how to write to the NT event log, and
how to deploy your EXE as a service.

Creating the Timer Object
The basic design of an NT service is an application that loops contin-

uously, waiting for certain actions to occur. This sounds like a perfect use
for PowerBuilder’s timer object. There are four steps to creating a timing
object for an NT service:
1. Create a timer object that is a standard class inherited from the timing

object.
2. Add a function to initialize the service.
3. Add a function to finalize the service.
4. Add code to the timer event.

The Initialize Function
It’s good practice for an NT service to record the fact that it started

successfully. The preferred way of doing this is to write an entry to the
NT event log. (I’ll discuss how to do this later. For now just be aware that

P B D J F E A T U R E

PART 2

T
his is the second of two articles describing how JP Morgan in

London developed an XML interface between a Web-based bond

trading system and one of its back-office systems. Part 1 (Vol. 8,

issue 8) focused on parsing the XML file; Part 2 shows how to

write an NT service in PowerBuilder.

27www.PowerBuilderJournal.com PBDJ volume8 issue9

it’s the first thing you
should do.)

PowerBuilder termi-
nates an application when
the last window closes or
the application’s Open
event finishes – whichever
comes first. This works
well in most applications
where at least one window
is open while the system is
in use. However, with
a nonvisual application,
such as a service, there are
no windows. If you initial-
ize a timer when the appli-
cation starts, PowerBuilder
may close down the appli-
cation before the timer
event is triggered. As a
workaround, open an
invisible window before
starting the timer. This
will prevent PowerBuilder
from terminating your
application. In addition to
keeping the application
alive, the window is
useful during develop-
ment. Check the applica-
tion’s handle to determine
if you’re running as an exe-
cutable or from the Power-
Builder IDE. If you’re run-
ning in development,
make the window visible
so that you can display
debugging messages on it.

The only other task
that the initialize function
needs to do is to start the

timer. You should retrieve the timer interval from the registry, INI file, or
database rather than using a hard-coded value.

The Finalize Function
It’s important that an NT service tidy up after itself. The finalize func-

tion should do standard shutdown processing such as:
• Disconnecting from the XML parser
• Logging off from the database
• Destroying OLE objects

It’s also good practice to write an entry to the NT event log recording
that the service has finished.

The Timer Event
The timer event is the heart of the service. It’s triggered every x sec-

onds and each time it performs four functions:
1. It stops the timer: The timer is stopped just in case a single cycle takes

longer than the timer interval. Although this is unlikely under normal
processing conditions, it’s quite likely if you’re using the debugger. If
you don’t stop the timer, overlapping timer events may be triggered,
which is confusing.

2. It performs a single cycle of work: To keep the timer event code nice
and clean, call a function that performs a single iteration of what the
service is supposed to do. (More about this later.)

3. It performs garbage collection: Even though PowerBuilder should tidy
up any orphaned objects, I prefer to leave nothing to chance. The ser-
vice may have to run 24/7 so it’s important that it’s robust with no
memory leaks.

4. It restarts the timer: If you don’t restart the timer, no further timer
events will be triggered.

A Cycle of Work
A cycle of work is a discrete unit of processing that should be small

enough to start and stop during the timer period. Ideally, each cycle
would be stateless and wouldn’t rely on events that occurred in previous
cycles, although in practice this may not be possible. For example, you
might want each cycle to connect to the database, do its processing, and
disconnect. Although this would start and stop the cycle in the same
state, your database administrator may not be happy with performing
expensive operations like connect and disconnect every few seconds.

To make matters worse, if you use Sybase 11.5 there’s a memory leak
in the Open Client driver, so if you do connect and disconnect each cycle
you’ll have to reboot the server on a regular basis. It’s more efficient to
maintain a transaction that’s connected when the service starts and dis-
connected when it finishes. If you decide on a permanent transaction,
it’s important to tend to lost database connections. At the start of each
cycle check that the transaction is still alive and reconnect if necessary.

A typical cycle of work for an XML parsing service might be:
• Check that the database connection is alive and reconnect if neces-

sary.
• Check an “in box” directory for incoming XML files. (More about this

later.)
• Parse the XML files using the XML parsing methods discussed in Part

1 of this article.
• Process each XML file. This probably involves updating a database,

calling a stored procedure, sending an e-mail, or invoking a business
rule nonvisual object.

• Generate any outgoing XML files that are required either as a result of
the incoming messages or in response to state changes in the data-
base.

There are some things to remember when designing your cycle of
work. Services can’t access network drives, so you may need to configure
your server accordingly. At JP Morgan our Sybase drivers were installed
on network drives so we had to install local copies before the service
could connect to the database. Obviously, services can’t interact with the
user because they may be started when nobody is logged on. This means
you can’t use message boxes or ask the user for any sort of input. You’ll
have to record any application settings in the registry, an INI file, or the
database.

The NT Event Log
It’s probably time to explain how to use the NT event log. Table 1

shows the three Win32 API calls you’ll use to write to the event log.
Listing 1 shows how to declare them as external functions; Listing 2 is a
code snippet that will write “Hello” to the event log. (All code can be
found at www.PowerBuilderJournal.com.)

After you run the code in Listing 2, open the event log viewer and find
the message in the application log. As you can see from Figure 1, the
message has been prefixed by a warning and appears as:“The descrip-
tion for event ID (1) in source (NT Event Log Demo) cannot be found.

TABLE 1 Win32 event log API functions

WIN32 API Function Description
RegisterEventSource() Establishes a connection to the event log

ReportEvent() Writes an entry to the event log

DeregisterEventSource() Closes the event log handle

WRITTEN BY PAUL DONOHUE

The local computer may not have the necessary registry information or
DLL files to display messages from a remote computer. The following
information is part of the event: Hello.”

Windows NT has inserted the warning because you don’t have a mes-
sage file. The event log doesn’t normally store the wording of every mes-
sage in the log. Instead, the text of each message is stored in a message
file and given a unique identifier. Messages can have placeholders such
as “Error number %1 occurred during the %2 process.” When you con-
nect to the event log you specify an event source that relates to a mes-
sage file. When you log an event you supply the identifier of the message
along with values for the placeholders. If there’s no message file for the
event source, NT will add the “description for event cannot be found”
warning to the start of your message.

How do you make a message file? Unfortunately, these are DLLs and
PowerBuilder cannot compile a DLL of the required format. If you have
a C++ compiler you can make your own message file. You can either
make a file with one entry for each message your service requires or you
can make a generic message file DLL that has only one message consist-
ing of just a placeholder. The generic approach uses more event log
resources, as the text of each message is stored each time, but it lets you
write any message to the log, and you can reuse the message file for all
your applications.

I won’t go into the details of compiling a message file, but if you’re
interested, refer to Kevin Miller’s book, mentioned in the Resource sec-
tion at the end of this article. I use a generic message file that you can
download, along with the example source code, from the PBDJ URL
mentioned earlier.

You have to let the event log service know about your message file.
This is achieved with the following registry entries. Add your service as a
new key under “HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \
Services \ Eventlog \ Application \ MyService” where the “MyService” is
the event log source you register in your application. Add a string value
called “EventMessageFile” whose value is the fully qualified name of
your message file, for example, “C:\SERVICE\MESSAGE.DLL”. Finally,
add a DWORD value called “TypesSupported” with a value of 7. Why 7?
You’ll have to read Kevin Miller’s book.

Processing Files
Unless you’re using a queuing system such as IBM’s MQSeries,

your NT service will have to access XML files. Although PowerBuilder’s
10 built-in file functions are useful for manipulating individual
files, they provide no way to identify all the files in a directory or

move files – both of
which are essential for a
service that processes
XML files. Table 2 shows
three Win32 API func-
tions that provide this
functionality. Listing 3
shows how to declare
the functions and List-
ing 4 gives an example
of how to use them.

Both FindFirstFileA
and FindNextFileA use a
structure passed by ref-
erence to hold the file
information. Actually,

you have to create two structures because the “file_data” structure con-
tains the “file_datetime” structure. See Tables 3 and 4 for details of what’s
required. The third API, MoveFileA, is straightforward. It has two argu-
ments, which are a “from” file and a “to” file. When called, it will move a
file from one location to the other.

Using the Timer Object
Using the event log and file processing API calls, it’s simple to write

your timer object’s cycle of work. It might scan an “in box,” parse any
XML files it finds, then move the processed files to a “processed box.”
Once the timer object has been developed, you have to add code to the
application object to use it.

First, declare a global variable of the same type as your timer object. If the
timer object is called “n_cst_service”, the declaration might look like this:

n_cst_service gnv_service

Second, in the application’s open event create a new instance of the
timer object and call the initialize function to start it running.
Remember, this function will open an invisible window to keep the
application running after the open event script finishes.

gnv_service = CREATE n_cst_service

gnv_service.of_initialize()

Third, in the application’s close event call the finalize function and
destroy the timer. If you don’t destroy the timer, then strange things will
start to happen – particularly in the development environment.

gnv_service.of_finalize()

DESTROY gnv_service

Running as a Service
So far, all you’ve done is develop a nonvisual PowerBuilder applica-

tion that acts like a service. To deploy your application as a service, you’ll
use two utilities that come with the WindowsNT4 Resource Kit – SRVANY
and SRVINSTW. If you don’t have the resource kit, you can download
these utilities from Microsoft’s Web site. By the way, I’ve tested these on
Windows 2000 and they work fine.

SRVANY is a wrapper that can run any executable as a service. The first

FIGURE 1 Entry in NT event log showing
missing message file error

TABLE 2 Win32 file manipulation API functions

WIN32 API Function Description
FindFirstFileA Find the first file in a directory

FindNextFileA Find the next file in a director.

MoveFileA Move a file

TABLE 3 The “file_data” structure used by the FindFirstFileA and
FindNextFileA API functions

Data Type Variable
unsignedlong ul_fileattributes

s_file_datetime str_creationtime

s_file_datetime str_lastaccesstime

s_file_datetime str_lastwritetime

unsignedlong ul_filesizehigh

unsignedlong ul_filesizelow

unsignedlong ul_reserved0

unsignedlong ul_reserved1

character ch_filename[260]

character ch_alternatefilename[14]

TABLE 4 “file_datetime” structure used by “file_data” structure

Data Type Variable
unsignedlong ul_lowdatetime

unsignedlong ul_highdatetime

28 www.PowerBuilderJournal.comPBDJ volume8 issue9

step in using this is to compile your application into an EXE. You can use
machine code or interpreted, but it’s worth the extra compile time to
make machine code executable.

SRVINSTW is a service installation wizard. You’ll use it to configure
SRVANY as a service that will run our executable. Using SRVINSTW is
very straightforward – see Figure 2 for a sample screen print. The only
thing to remember is that the executable file for the service will be
SRVANY.EXE, not your PowerBuilder executable. The wizard will ask you
a number of questions. The correct answers are as follows:
• Choose “install a service”.
• Select local machine.
• Give your service an appropriate name.
• The EXE to run is SRVANY.EXE.
• Run your service as its own process.
• Use the system account as it doesn’t require a user ID or password. As

soon as the server is booted, the system account is available.
• Check the “interact with desktop” box. Your service may not interact

with the desktop, but SRVANY needs this
enabled.

• Set the start-up option to automatic.

At this point SRVANY is set up as a service,
but it hasn’t been configured to run your appli-
cation. Some registry entries are required to
associate your EXE with SRVANY. The installa-
tion wizard will have created a registry entry
for your service under the key “HKEY_LOCAL_
MACHINE\SYSTEM\ControlSet001\Services”.
You have to add two new keys – “parameters” and “enum”. Add three
string values under the “parameters” key:
1. Application: Your service’s path and EXE
2. AppDirectory: Your service’s working directory
3. AppParameters: Any command-line parameters that your service

requires

You need to add any values under the “enum” key when the service is
first run. If everything has been set up correctly, reboot your machine
and your service should start working.

Controlling the Service
An NT service doesn’t have any way of interacting directly with a user.

There’s no window on which to place controls such as “Stop” or “Start”
buttons, and even if there was, the service would start running when the
machine boots rather than waiting for a user to log on.

So how do you control it? The easiest way is to store control informa-
tion in the registry. The bare minimum would be a flag to indicate
whether the service should be running. On each cycle check the value of
this flag and, if it’s set to “N”, stop the service. The only thing that keeps
the application running is the invisible window so closing this when the
flag changes to “N” will allow the application’s close event to execute,
which will call the finalize function.

To make your service easier to support, it’s worth developing a simple
administrator utility so you don’t have to edit the registry directly. This
utility can control the stop/start process and record database connec-
tion details and the location of in, out, and processed directories for
your XML messages. At JP Morgan our administration tool takes the
start/stop idea one step further by defining daily processing start and
stop times to ensure that the service will shut down during the nightly
backup.

If you stop your service from Control Panel, SRVANY will use the
TerminateProcess() function to stop your EXE. This is a drastic way of
stopping executables as it sends no application or window close events.
Your application gets no warning that SRVANY wants it to close down
and it will be stopped immediately. The correct way to stop your service
is to set the start/stop flag in the registry using the administration utili-
ty. This will stop the PowerBuilder executable cleanly and execute the
finalize function. Remember that your service will log an event when it
shuts down cleanly, so check the log to make sure it’s finished. Once you
see the shutdown message, it’s safe to stop the service from Control
Panel, which will terminate SRVANY.

Final Thoughts
A service should be designed to run continuously – especially one

that interfaces with the Internet. Make sure your application is bullet-
proof by checking every return status and planning for every possibility.
Time spent adding self-healing features like automatically reconnecting
lost database connections will pay off.

Make good use of the event log. A service is like a black box in that you
can’t really tell what’s going on inside. The event log is your window into the
service, so log progress messages on a regular basis. If an error does occur,
record everything that might be useful in tracking down the problem.

Before you put the service into production, spend some time moni-
toring its resource usage
with NT Performance
Monitor. If you find a mem-
ory leak, test each compo-
nent in isolation if possible
to determine whether the
problem is with the parsing,
file management, or some-
thing else.

Once you get an NT ser-
vice working properly, it can

be a lot easier to support than a traditional Windows application.
Because it operates below the level of user interaction, there’s much less
that can go wrong with it. Short of turning off the power, it should run
continuously, and if the worst happens and it does crash, all it takes to
recover is to reboot the server.

Resource
Miller, K. (1998). Professional NT Services. Wrox Press. This book covers
everything about NT services although, unless you intend writing one in
C++, there isn’t much else you need to know. ▼

AUTHOR BIO
Paul Donohue has 15 years’ experience as a solution provider. He’s worked with PowerBuilder since version
2 and is a certified PowerBuilder developer.

pbdj@pauldonohue.com

FIGURE 2 SRVINSTW, the service installation wizard

“A service should be designed to

run continuously – especially one that

interfaces with the Internet”

30 www.PowerBuilderJournal.comPBDJ volume8 issue9

Declaring the Win32 event log API functions
function long RegisterEventSource(string pszServerName,
string pszSourceName) LIBRARY "ADVAPI32.DLL" alias for
"RegisterEventSourceA"

function boolean ReportEvent(long hEventLog, integer
wType, integer wCategory, long dwEventID, long pUserSID,
integer wNumStrings, long dwDataSize, string
pStringArray[], long pRawData) LIBRARY "ADVAPI32.DLL"
alias for "ReportEventA"

function boolean DeregisterEventSource(long hEventLog)
LIBRARY "ADVAPI32.DLL" alias for "DeregisterEventSource"

Example of writing to the event log
integer li_icon // The icon id (e.g. 1 = stop sign)
long ll_event_source_handle // The event log system's
handle
string ls_message_array[] // The event log expects an
array
string ls_server // The server whose log you want to
write to
Boolean lb_result // Success or failure?

// Place "hello" into an array because the API
// call does not accept a simple string
ls_message_array[1] = "hello"

// Register the event source and get a handle
// to the WIN32 event logging system
SetNull(ls_server) // A null server means write locally
ll_event_source_handle = RegisterEventSource(ls_server, &

"NT Event Log Demo")

// Log the message
lb_result = ReportEvent (&

ll_event_source_handle, /* Handle for the
event log */ &

li_icon, /* Icon type */ &
1, /* Category */ &
1, /* Event ID */ &
0, /* User ID */ &
1, /* Strings in the

array */ &
0, /* Amount of raw

data */ &
ls_message_array, /* Message array */ &
0 /* Raw data */ &
)

// Deregister the event source
DeregisterEventSource(ll_event_source_handle)

Declaring the Win32 file manipulation API functions
function long FindFirstFile (ref string sPathName, ref
s_file_data fd) LIBRARY "KERNEL32.DLL" alias for
"FindFirstFileA"

function long FindNextFile (long lFileHandle, ref
s_file_data fd) LIBRARY "KERNEL32.DLL" alias for
"FindNextFileA"

function long MoveFile (String lpExistingFileName, String
lpNewFileName) LIBRARY "KERNEL32.DLL" Alias for "MoveFileA"

Example of finding all files in a directory
s_file_data lstr_filedata // An array to hold file info
string ls_file_path // Path of the directory to process
string ls_file_name_this // Current file name
string ls_file_name_all // A list of all files
long ll_file_handle // Current file handle
long ll_more_files // Any more files?

// Find the first file in the temp directory
ls_file_path = "C:\TEMP*.XML"

ll_file_handle = FindFirstFile (ls_file_path, lstr_fileda-
ta)

// Process any files in the temp directory
IF ll_file_handle = -1 THEN // -1 = no files found

MessageBox ("No files to process", &
"No XML files were found.", &
Exclamation!, &
OK!)

ELSE

DO
// Get the current file name from the
// structure and add it to the list
ls_file_name_this = lstr_filedata.ch_filename
ls_file_name_all = ls_file_name_all &

+ ls_file_name_this &
+ "~r~n"

// Get the next file
ll_more_files = FindNextFile (ll_file_handle,

lstr_filedata)

LOOP WHILE ll_more_files = 1 // 0 = no more files

MessageBox ("XML Files", &
"These XML files were found.~r~n~r~n"

&
+ ls_file_name_all, &
Information!, &
OK!)

END IF

Listing 4

Listing 3

Listing 2

Listing 1

!edoCehtdaolnwoD
The code listing for this article can also be located at

www.PowerBuilderJournal .com

31PBDJ volume8 issue9www.PowerBuilderJournal.com

ANNUAL COVER PRICE

$83.88
ANNUAL NEWSSTAND RATE

$77.99

$5.89

YOU PAY

YOU SAVE
Off the
Newsstand Rate

*Offer subject to change without notice

SAVE$5OffSAVE$5Off*
the annual
newsstand rate

Receive 12 issues of

XML-Journal for

only $77.99! That’s a

savings of $5.89 off the

annual newsstand rate.

Sign up online at

www.sys-con.com

or call 1-800-513-7111

and subscribe today!

Here’s what
you’ll find in every
issue of XML-J:

• Exclusive feature

articles

• Interviews with the

hottest names in XML

• Latest XML product

reviews

• Industry watch

