PART 2

Writing an NT service in PowerBuilder

&= ol his is the second of two articles describing how JP Morgan in
London developed an XML interface between a Web-based bond

trading system and one of its back-office systems. Part 1 (Vol. 8,

= issue 8) focused on parsing the XML file; Part 2 shows how to

write an NT service in PowerBuilder.

Why Use an NT Service?

JP Morgan’s XML interface has to perform three core functions:
1. Process incoming XML messages.
2. Watch for state changes in the database.
3. Process outgoing XML messages.

These tasks had to be performed 24/7, without human intervention,
in a secure and reliable manner. The ideal solution was an NT service.
This could be installed on a server and configured to start as soon as the
machine booted up without the need for anyone to log on. We knew that
Microsoft had a utility, SRVANY, that would let any EXE be deployed as a
service. A bit of research showed that it would work with a PowerBuilder
application.

26 PBDJ volume8 issue9

i o R el T

Writing an NT service is different from a traditional PowerBuilder
application. Services are essentially batch jobs. They have no user inter-
face, so if you need to get a message to the outside world you can’t just
pop up a message box, and they are time-driven rather than waiting for
user interaction such as mouse clicks. There are three things you need to
know about to write a service in PowerBuilder: how to use the timer
object in a nonvisual application, how to write to the NT event log, and
how to deploy your EXE as a service.

Greating the Timer Object

The basic design of an NT service is an application that loops contin-
uously, waiting for certain actions to occur. This sounds like a perfect use
for PowerBuilder’s timer object. There are four steps to creating a timing
object for an NT service:

1. Create a timer object that is a standard class inherited from the timing
object.

2. Add a function to initialize the service.

3. Add a function to finalize the service.

4. Add code to the timer event.

e Initialize Function

It's good practice for an NT service to record the fact that it started
successfully. The preferred way of doing this is to write an entry to the
NT event log. (I'll discuss how to do this later. For now just be aware that

. www.PowerBuilderJournal.com
;Lj".,.‘d. e T F Y

it's the first thing you
should do.)

PowerBuilder termi-
nates an application when
the last window closes or
the application’s Open
event finishes — whichever
comes first. This works
well in most applications
where at least one window
is open while the system is
in use. However, with
a nonvisual application,
such as a service, there are
no windows. If you initial-
ize a timer when the appli-
cation starts, PowerBuilder
may close down the appli-
cation before the timer
event is triggered. As a
workaround, open an
invisible window before
starting the timer. This
will prevent PowerBuilder
from terminating your
application. In addition to
keeping the application
alive, the window is
useful during develop-
ment. Check the applica-
tion’s handle to determine
if you're running as an exe-
cutable or from the Power-
Builder IDE. If you're run-
ning in development,
make the window visible
so that you can display
debugging messages on it.

The only other task
that the initialize function
needs to do is to start the
timer. You should retrieve the timer interval from the registry, INI file, or
database rather than using a hard-coded value.

The Finalize Function

It's important that an NT service tidy up after itself. The finalize func-
tion should do standard shutdown processing such as:
* Disconnecting from the XML parser
* Logging off from the database
* Destroying OLE objects

WRITTEN BY PAUL DON

It’s also good practice to write an entry to the NT event log recording
that the service has finished.

The Timer Event

The timer event is the heart of the service. It’s triggered every x sec-
onds and each time it performs four functions:
1. It stops the timer: The timer is stopped just in case a single cycle takes
longer than the timer interval. Although this is unlikely under normal

processing conditions, it’s quite likely if you're using the debugger. If

you don'’t stop the timer, overlapping timer events may be triggered,
which is confusing.

2. It performs a single cycle of work: To keep the timer event code nice
and clean, call a function that performs a single iteration of what the
service is supposed to do. (More about this later.)

3. It performs garbage collection: Even though PowerBuilder should tidy
up any orphaned objects, I prefer to leave nothing to chance. The ser-
vice may have to run 24/7 so it’s important that it’s robust with no
memory leaks.

4. It restarts the timer: If you don't restart the timer, no further timer
events will be triggered.

A Gycle of Work

A cycle of work is a discrete unit of processing that should be small
enough to start and stop during the timer period. Ideally, each cycle
would be stateless and wouldn’t rely on events that occurred in previous
cycles, although in practice this may not be possible. For example, you
might want each cycle to connect to the database, do its processing, and
disconnect. Although this would start and stop the cycle in the same
state, your database administrator may not be happy with performing
expensive operations like connect and disconnect every few seconds.

To make matters worse, if you use Sybase 11.5 there’s a memory leak
in the Open Client driver, so if you do connect and disconnect each cycle
you'll have to reboot the server on a regular basis. It's more efficient to
maintain a transaction that’s connected when the service starts and dis-
connected when it finishes. If you decide on a permanent transaction,
it's important to tend to lost database connections. At the start of each
cycle check that the transaction is still alive and reconnect if necessary.

A typical cycle of work for an XML parsing service might be:
¢ Check that the database connection is alive and reconnect if neces-

sary.

* Checkan “in box” directory for incoming XML files. (More about this
later.)

* Parse the XML files using the XML parsing methods discussed in Part
1 of this article.

* Process each XML file. This probably involves updating a database,
calling a stored procedure, sending an e-mail, or invoking a business
rule nonvisual object.

¢ Generate any outgoing XML files that are required either as a result of
the incoming messages or in response to state changes in the data-
base.

There are some things to remember when designing your cycle of
work. Services can’t access network drives, so you may need to configure
your server accordingly. At JP Morgan our Sybase drivers were installed
on network drives so we had to install local copies before the service
could connect to the database. Obviously, services can’t interact with the
user because they may be started when nobody is logged on. This means
you can't use message boxes or ask the user for any sort of input. You'll
have to record any application settings in the registry, an INI file, or the
database.

The NT Event Log

It’s probably time to explain how to use the NT event log. Table 1
shows the three Win32 API calls you'll use to write to the event log.
Listing 1 shows how to declare them as external functions; Listing 2 is a
code snippet that will write “Hello” to the event log. (All code can be
found at www.PowerBuilderJournal.com.)

After you run the code in Listing 2, open the event log viewer and find
the message in the application log. As you can see from Figure 1, the
message has been prefixed by a warning and appears as:“The descrip-
tion for event ID (1) in source (NT Event Log Demo) cannot be found.

WING2 AP Function || Desttiption | ||| || \
""“‘““‘”‘““"”"”"”‘H"‘Iilllllllilﬂ!ﬂ staishs 2 i |

il it
e y L

pOTiE

AB Win32 event log API functions

,,i %BJ volume8 issue9 27

The local computer may not have the necessary registry information or
DLL files to display messages from a remote computer. The following
information is part of the event: Hello.”

Windows NT has inserted the warning because you don’t have a mes-
sage file. The event log doesn’t normally store the wording of every mes-
sage in the log. Instead, the text of each message is stored in a message
file and given a unique identifier. Messages can have placeholders such
as “Error number %1 occurred during the %2 process.” When you con-
nect to the event log you specify an event source that relates to a mes-
sage file. When you log an event you supply the identifier of the message
along with values for the placeholders. If there’s no message file for the
event source, NT will add the “description for event cannot be found”
warning to the start of your message.

How do you make a message file? Unfortunately, these are DLLs and
PowerBuilder cannot compile a DLL of the required format. If you have
a C++ compiler you can make your own message file. You can either
make a file with one entry for each message your service requires or you
can make a generic message file DLL that has only one message consist-
ing of just a placeholder. The generic approach uses more event log
resources, as the text of each message is stored each time, but it lets you
write any message to the log, and you can reuse the message file for all
your applications.

I won't go into the details of compiling a message file, but if you're
interested, refer to Kevin Miller’s book, mentioned in the Resource sec-
tion at the end of this article. I use a generic message file that you can
download, along with the example source code, from the PBDJ URL
mentioned earlier.

You have to let the event log service know about your message file.
This is achieved with the following registry entries. Add your service as a
new key under “HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \
Services \ Eventlog \ Application \ MyService” where the “MyService” is
the event log source you register in your application. Add a string value
called “EventMessageFile” whose value is the fully qualified name of
your message file, for example, “C:\SERVICE\MESSAGE.DLL". Finally,
add a DWORD value called “TypesSupported” with a value of 7. Why 7?
You'll have to read Kevin Miller’s book.

Processing files

Unless youre using a queuing system such as IBM’s MQSeries,
your NT service will have to access XML files. Although PowerBuilder’s
10 built-in file functions are useful for manipulating individual
files, they provide no way to identify all the files in a directory or

move files - both of

IE_ =l which are essential for a
e e | service that processes
= = ==y _ &+ | | XML files. Table 2 shows
U Em & | [| three Win32 API func-
it tions that provide this
e e e || functionality. Listing 3

= == e shows how to declare

the functions and List-

S =] ing 4 gives an example
of how to use them.

= Both FindFirstFileA

C o] —] i and FindNextFileA use a

structure passed by ref-
erence to hold the file
information. Actually,

| FGURE 14 Entry in NT event log showing

missing message file error

||Descripti

AL [st il il a aivestoryl | ||| |
__ FindNextrileA || | II-IIIIiEI]Eﬂ!l;ﬂ!ﬂ[ﬂ!!ﬂ;l!ﬂﬂ!!ﬂ CAIRTARTRNAY

AL
: | f |

 WIN32 API Function
(R AIER || |

AB Win32 file mampulatlon API functlons

28 PBDJ volumes issuc9

Data Type

RS iesnaes 1|
R

stle_gatomo | st creationtine__
s_file_datetime
s_file_datetime

L
0
Do
W

unsignedlong
unsignedlong
unsignedlong
unsignedlong
character
character

A
T

alternatefilena e[14]

AB The “file data” structure used by the FmdestHIeA and
FindNextFileA API functions

I IIIIIIIIIIIEl!!E!"d!!Ed!'E!IIIIIIIIIIIIIIIIIIIIIIIIIIII

||

TABLE 4

flle datetlme structure used by flle data structure

you have to create two structures because the “file_data” structure con-
tains the “file_datetime” structure. See Tables 3 and 4 for details of what’s
required. The third API, MoveFileA, is straightforward. It has two argu-
ments, which are a “from” file and a “to” file. When called, it will move a
file from one location to the other.

Using he Timer Object

Using the event log and file processing API calls, it’s simple to write
your timer object’s cycle of work. It might scan an “in box,” parse any
XML files it finds, then move the processed files to a “processed box.”
Once the timer object has been developed, you have to add code to the
application object to use it.

First, declare a global variable of the same type as your timer object. If the
timer object is called “n_cst_service”, the declaration might look like this:
n_cst_service gnv_service

Second, in the application’s open event create a new instance of the
timer object and call the initialize function to start it running.
Remember, this function will open an invisible window to keep the
application running after the open event script finishes.

gnv_service = CREATE n_cst_service
gnv_service.of _initialize()

Third, in the application’s close event call the finalize function and
destroy the timer. If you don’t destroy the timer, then strange things will
start to happen — particularly in the development environment.

gnv_service. of _finalize()
DESTROY gnv_service

Running as a Service

So far, all you've done is develop a nonvisual PowerBuilder applica-
tion that acts like a service. To deploy your application as a service, you'll
use two utilities that come with the WindowsNT4 Resource Kit - SRVANY
and SRVINSTW. If you don’t have the resource kit, you can download
these utilities from Microsoft’s Web site. By the way, I've tested these on
Windows 2000 and they work fine.

SRVANY is a wrapper that can run any executable as a service. The first

[Iretal Remave Sevce |

Wwheloome lo e S ervioe Dosation 'Wized, Plese osiect
wtach operaion v wath ko perd om

Install & sEnaCe

™ Faengwa & price

Click: Himwt webpmry poop s ssachy bo conbings,

Mied » Carcnl]

step in using this is to compile your application into an EXE. You can use
machine code or interpreted, but it's worth the extra compile time to
make machine code executable.

SRVINSTW is a service installation wizard. You'll use it to configure
SRVANY as a service that will run our executable. Using SRVINSTW is
very straightforward — see Figure 2 for a sample screen print. The only
thing to remember is that the executable file for the service will be
SRVANY.EXE, not your PowerBuilder executable. The wizard will ask you
a number of questions. The correct answers are as follows:
¢ Choose “install a service”.
¢ Select local machine.
¢ Give your service an appropriate name.
¢ The EXE to run is SRVANY.EXE.

* Run your service as its own process.

* Use the system account as it doesn’t require a user ID or password. As
soon as the server is booted, the system account is available.

¢ Check the “interact with desktop” box. Your service may not interact
with the desktop, but SRVANY needs this

enabled.

So how do you control it? The easiest way is to store control informa-
tion in the registry. The bare minimum would be a flag to indicate
whether the service should be running. On each cycle check the value of
this flag and, if it’s set to “N”, stop the service. The only thing that keeps
the application running is the invisible window so closing this when the
flag changes to “N” will allow the application’s close event to execute,
which will call the finalize function.

To make your service easier to support, it's worth developing a simple
administrator utility so you don't have to edit the registry directly. This
utility can control the stop/start process and record database connec-
tion details and the location of in, out, and processed directories for
your XML messages. At JP Morgan our administration tool takes the
start/stop idea one step further by defining daily processing start and
stop times to ensure that the service will shut down during the nightly
backup.

If you stop your service from Control Panel, SRVANY will use the
TerminateProcess() function to stop your EXE. This is a drastic way of
stopping executables as it sends no application or window close events.
Your application gets no warning that SRVANY wants it to close down
and it will be stopped immediately. The correct way to stop your service
is to set the start/stop flag in the registry using the administration utili-
ty. This will stop the PowerBuilder executable cleanly and execute the
finalize function. Remember that your service will log an event when it
shuts down cleanly, so check the log to make sure it’s finished. Once you
see the shutdown message, it’s safe to stop the service from Control
Panel, which will terminate SRVANY.

Final Thoughts

A service should be designed to run continuously — especially one
that interfaces with the Internet. Make sure your application is bullet-
proof by checking every return status and planning for every possibility.
Time spent adding self-healing features like automatically reconnecting
lost database connections will pay off.

Make good use of the event log. A service is like a black box in that you
can't really tell what's going on inside. The event log is your window into the
service, so log progress messages on a regular basis. If an error does occur,
record everything that might be useful in tracking down the problem.

Before you put the service into production, spend some time moni-

toring its resource usage
with NT Performance

¢ Set the start-up option to automatic.

At this point SRVANY is set up as a service,
but it hasn’t been configured to run your appli-
cation. Some registry entries are required to
associate your EXE with SRVANY. The installa-
tion wizard will have created a registry entry

A service should be designed to
run continuously - especially one that

interfaces with the Inter‘net”

Monitor. If you find a mem-
ory leak, test each compo-
nent in isolation if possible
to determine whether the
problem is with the parsing,
file management, or some-
thing else.

for your service under the key “HKEY_LOCAL_

MACHINE\SYSTEM\ControlSet001\Services”.

You have to add two new keys — “parameters” and “enum”. Add three

string values under the “parameters” key:

1. Application: Your service’s path and EXE

2. AppDirectory: Your service’s working directory

3. AppParameters: Any command-line parameters that your service
requires

You need to add any values under the “enum” key when the service is
first run. If everything has been set up correctly, reboot your machine
and your service should start working.

Controling the Service

An NT service doesn’t have any way of interacting directly with a user.
There’s no window on which to place controls such as “Stop” or “Start”
buttons, and even if there was, the service would start running when the
machine boots rather than waiting for a user to log on.

30 PBDJ volume8 issue9

e e S SN |

Once you get an NT ser-
vice working properly, it can
be a lot easier to support than a traditional Windows application.
Because it operates below the level of user interaction, there’s much less
that can go wrong with it. Short of turning off the power, it should run
continuously, and if the worst happens and it does crash, all it takes to
recover is to reboot the server.

Resource

Miller, K. (1998). Professional NT Services. Wrox Press. This book covers
everything about NT services although, unless you intend writing one in
C++, there isn’'t much else you need to know. v

Awmnmo

@
o

.. pbdi@pauldonohue.com

~ www.PowerBuilderJournal.com

q
e T S Y

Listing 1

Decl aring the Wn32 event |og APl functions

function | ong RegisterEvent Source(string pszServer Nane,
string pszSourceNane) LIBRARY "ADVAPI 32.DLL" alias for
"Regi st er Event Sour ceA"

function bool ean ReportEvent(|ong hEventLog, integer
wType, integer wCategory, |ong dwEventID, |ong pUserSID,
integer wNunttrings, |ong dwDataSize, string
pStringArray[], long pRawData) LI BRARY "ADVAPI 32. DLL"
alias for "ReportEventA"

function bool ean Deregi sterEvent Source(|ong hEventLog)
LI BRARY "ADVAPI 32. DLL" alias for "DeregisterEventSource"

Listing 2

Exanple of witing to the event |og

integer li_icon // The icon id (e.g. 1 = stop sign)
long Il _event_source_handle // The event log systenis
handl e

string |s_nmessage_array[] // The event |og expects an
array

string |s_server // The server whose |og you want to
wite to

Bool ean I b_result // Success or failure?

/1 Place "hello" into an array because the API

/1l call does not accept a sinple string

| s_message_array[1] = "hello"

/1 Register the event source and get a handle

/1 to the WN32 event |ogging system

SetNul | (I s_server) // A null server neans wite locally

Il _event_source_handl e = Regi sterEvent Source(ls_server, &
"NT Event Log Denp")

/1 Log the nessage
Ib_result = ReportEvent (&

Il _event _source_handle, /* Handle for the

event log */ &
l'i_icon, /* lcon type */ &
1, /* Category */ &
1, /* Event ID */ &
0, /* User ID*/ &
1, /* Strings in the
array */ &
0, /* Anount of raw
data */ &
| s_message_array, /* Message array */ &
0 /* Raw data */ &
)

/1 Deregister the event source
Der egi st er Event Sour ce(l | _event _sour ce_handl e)

Listing 3

Decl aring the Wn32 file manipul ation APl functions
function long FindFirstFile (ref string sPathName, ref
s_file_data fd) LIBRARY "KERNEL32.DLL" alias for

"Fi ndFi rstFil eA"

function long FindNextFile (long | FileHandl e, ref
s_file_data fd) LIBRARY "KERNEL32.DLL" alias for
"Fi ndNext Fi | eA"

function long MveFile (String |pExistingFileNane, String
| pNewFi | eNarre) LI BRARY "KERNEL32.DLL" Alias for "MveFileA"

Exanple of finding all files in a directory
s_file_data Istr_filedata // An array to hold file info
string Is_file_path // Path of the directory to process
string Is_file_name_this // Current file name

string Is_file_name_all // A list of all files

long Il _file_handle // Current file handle

long Il _more_files // Any nore files?

/1 Find the first file in the tenp directory
Is_file_path = "C\TEMP\ *. XM."

www.PowerBuilderJournal.com

Il _file_handle = FindFirstFile (Is_file_path,
ta)

Istr_fileda-

/'l Process any files in the tenp directory
IF 1l_file_handle = -1 THEN // -1 = no files found
MessageBox ("No files to process", &
"No XM. files were found.", &
Excl amation!, &
K!)
ELSE

/Il Get the current file nane fromthe
/] structure and add it to the Iist
I's_file_name_this = Istr_filedata.ch_filenane
Is file_name_all = Is_file_nane_all &

+ Is_file_nane_this &

+ "~r~n"

/1l Get the next file
Il _more_files = FindNextFile (II_file_handle,
Istr_filedata)

LOOP WHILE Il _nore_files = 1 // 0 = no nore files

MessageBox ("XM. Files", &
"These XML files were found.~r~n~r~n"

&
+ Is_file_nanme_all, &
Information!, &
)

END | F

VE $5%%....

Receive 12 issues of
XML-Journal for

only $77.99! That's a
savings of $5.89 off the

annual newsstand rate.

Sign up online at

WWw.sys-con.com
or call 1-800-513-7111

and subscribe today!

Off the
Newsstand Rate

$5.89

Here’s what
you’ll find in every

issue of XML-J:

« Exclusive feature
articles
Interviews with the
hottest names in XML
Latest XML product
reviews

-
p——
e -

nf_";.';-.i'-l."

Industry watch

PBDJ volume8 issue9 31

