
P B D J F E A T U R E

Some Background
Trading bonds in Europe was a very old-fashioned process involving

many manual processes and disparate systems. When a dealer wanted to
purchase a bond they would contact a bank, such as JP Morgan, by tele-
phone or fax. The details of the trade would be written down and then
entered into a back-office system. The dealers, banks, and clearinghous-

es all had computer systems but little information was communicated
electronically. The same deal might be entered into three different sys-
tems before it was settled.

The major players in the European bond market (JP Morgan,
Deutsche Bank, and Citibank) invited a British software house called
Capital Net to develop a system to automate the market. The result was
a Web-based B2B bond trading system called IssueLink that links deal-
ers, banks, and clearing systems.

Participants can access IssueLink via a browser or by developing an
XML interface to their own systems. JP Morgan decided to pursue the
XML option. The core component in the interface is an NT Service writ-
ten in PowerBuilder. The service runs 24/7, listening for messages from
IssueLink and parsing them when they arrive. Depending on the type of
message, different actions are performed, such as validating the trade,
updating a back-office system, or notifying a participant. Some incom-

J
P Morgan in London recently used PowerBuilder to
implement an XML interface between a Web-based
bond trading system and one of their back-office sys-
tems. This is the first of two articles that describe how

this system was developed.

Developing an XML parser using PowerBuilder

PART 1 OF 2

12 www.PowerBuilderJournal.comPBDJ volume8 issue8

ing messages may trigger outgoing messages that are processed by
IssueLink.

In the nine months since it first went live, the interface with IssueLink
has processed trades worth $20,000,000,000. Under the old manual sys-
tem trades could take over an hour to complete. Over a quarter of the
trades now take less than 15 minutes from when the dealer enters the
trade until it’s added to JP Morgan’s back-office system. The quickest
trade took only 1 minute 8 seconds.

What Is XML?
Most readers will be familiar with XML, but for those who aren’t I’ll

provide a quick introduction. XML stands for Extensible Markup
Language. Like HTML, XML uses tags to delimit the boundaries of data.
The basic format is “<name>” to indicate the start of the data and

“</name>” to indicate the end of the data. Unlike HTML, which has a
fixed set of tags, the tags in XML are user-defined and can be given
names that are appropriate for the data. The term extensible describes
this ability to define your own tags.

An XML document describes the structure of the data as well as its
content, but doesn’t contain any information on how the data should be
presented. You can use Extensible Stylesheet Language Transformations
(XSLT) to transform the structure of XML documents and Cascading
Style Sheets (CSS) to format them.

Because the names of data elements relate to real-world objects, it’s
possible to determine the purpose of the data without having to refer to
anything other than the XML file. Because of this, XML is said to be self-
describing.

XML documents can contain nested data such as “an employee has an
address and that address has a house number and a street” as well as
repeating data such as “an invoice is for one or more items.” It’s difficult
to represent nested and repeating data in traditional flat files.

XML version 1.0 became a World Wide Web Consortium (W3C) rec-
ommendation in February 1998. Many software vendors, including
Sybase and Microsoft, are XML-enabling their applications. XML is plat-
form- and vendor-independent, and XML documents are text-based,
which means they can be handled by all operating systems. Because of
these characteristics, an XML message generated on a Palm Pilot could
be interpreted on an IBM mainframe.

The following is a simple XML file that contains data relating to a pre-
sentation at TechWave.

<?xml version="1.0"?>

<presentation code="ID352">

<!--Example XML file-->

<title>A PB / XML Messaging System</title>

<presenter>Paul Donohue</presenter>

<audience>PowerBuilder Developers</audience>

<time>13:30</time>

<date>2001-08-13</date>

</presentation>

This example shows the three parts of an XML document that I’ll dis-
cuss in this article.
1. Elements are the core of an XML document: They consist of a start and

an end tag with the data between these tags. Elements may also have
child elements or attributes. In the example, presentation, title, and
time are among the elements.

2. Attributes are also name/value pairs: However, the name and data are
separated by an equal sign. They belong to an element but are not ele-
ments on their own, rather they add some sort of qualification to the
element they belong to. All attributes are strings and enclosed in single
or double quotes. In the example there’s only one attribute, code.

3. Comments are used to annotate XML documents: They begin with
“<!--” and end with “-->”. The example has one comment – “Example
XML file.”

Parsing an XML File
Although it would be possible to read and write XML files using

PowerBuilder’s file functions, they’re normally processed with a software
component called a parser. Parsers fall into two groups: DOM and SAX.

DOM stands for Document Object Model. DOM parsers load an entire
XML document into memory when the file is parsed. The data is placed
into a tree of nodes that your application can manipulate. This is only
suitable for small XML files because of the memory overhead. The meth-
ods described in this article use DOM.

SAX stands for Simple API for XML. SAX parsers are event-driven. As
the document is parsed, you’re notified when certain events occur. An
event might be finding the start or end of an element. SAX can handle
large files because they’re not read into memory. This is useful if you
want to process only a subset of the data in a file. The main drawback is

WRITTEN BY PAUL DONOHUE

13PBDJ volume8 issue8www.PowerBuilderJournal.com

14 www.PowerBuilderJournal.comPBDJ volume8 issue8

that there’s no random access to the data with-
in the document.

Why Use PowerBuilder for an XML
Parser?

When you think of XML you probably think
of the Internet and Java because these tech-
nologies have grown up together. However,
there’s no reason why you can’t process XML
messages using almost any language – espe-
cially if there’s a parser available for your devel-
opment tool. When I worked on my first XML
project, my entire team consisted of
PowerBuilder developers. Although some were
familiar with Java, they didn’t have enough

experience to build a mission-critical system
using Java. The project deadlines didn’t allow
any time for training so the team investigated
whether we could develop in PB.

A development tool must meet three criteria
before it can be used to develop a DOM-based
XML system.
1. Be able to parse an XML file: PB has no low-

level XML support built in; however, neither
do C++ or Java. Most XML-based systems use
a parser to process the XML data rather than
perform low-level file operations. The XML
parser we decided to use is an OLE object
that PB can access easily.

2. Be able to manipulate the data in memory:
When using a DOM parser you need to be
able to manipulate the nodes of the XML
message in memory. PB’s memory manage-
ment is not as advanced as C++’s; however,
our chosen parser did most of the tricky work
for us and provided simple methods to access
the data. Using these methods and PB’s
arrays, structures, and nonvisual objects, we
could do whatever we wanted with the data.

3. Be able to access the database: XML is a
great technology for data interchange but at
some point you probably need to store the
data somewhere. PB’s strong point is its
database access, so it was simple to record
details of the messages and to update our
back-office systems.

The MS Redistributable Parser
There are many XML parsers available.

Many are open source and almost all seem to
have a weird name such as expat, XP, Xerces,
hex, and Xparse. Microsoft has included a pars-
er with Internet Explorer since version 4.7,
called the Microsoft Redistributable Parser,

and, as the name suggests, you can distribute
the parser royalty-free. Although this parser is
shipped as part of IE, it’s a separate OLE object
so any development tool that can access OLE
objects can use it.

If you install IE on your computer, the
parser will be registered automatically. The
only drawback to this is that the parser that
comes with IE may not be the latest version.
Early versions don’t support the final specifi-
cation of XSLT so it’s best to download the
parser on its own from the Microsoft site.
Once Internet Explorer is installed it will be
associated with the XML extension. Double-
click on an XML file in Windows Explorer and
IE will display it with the structure and data
color-coded.

How to Parse an XML File
Using the parser with PowerBuilder is simi-

lar to controlling any other OLE application
such as Word or Excel. Once you get the hang of
the syntax it’s easy to get it working. The mini-
mum code to do this is shown in Listing 1. All
error checking has been removed for clarity.

CONNECTING
The OLE object variable acts as a reference to

the XML parser. The ConnectToNewObject()
function invokes the Microsoft XML parser. The
parser that’s shipped with IE5 is identified by the
class name “Microsoft.XMLDOM”. If you install a
newer version, you’ll have to use the class
name “MSXML2.DOMDocument.3.0”. Use
PowerBuilder’s IsValid() function to test if the
ConnectToNewObject() function was successful.

Once you’ve connected to the OLE object
you can access the parser’s methods and
properties using notation similar to
“<ole_object_variable>.<method_or_proper-
ty>”. You can set many different attributes.
Table 1 shows some useful attributes.

LOADING
The load() method loads and parses an XML

document. If an error occurs while parsing the
file, the load method returns false and the
parseError attribute is populated. This struc-
ture will pinpoint the location of the error as
well as the nature of the problem. The impor-
tant properties of parseError are shown in
Table 2.

Walking the Tree
Remember that DOM parsers load the entire

XML file into memory, whereas SAX parsers are
event-driven. One advantage of DOM is that you
can go straight to the node you require using the
selectSingleNode() method. This is fine if you
know the structure of the XML files that you’ll be
processing. However, if you’re unsure what the
structure will be, you require a generic solution.

Once the file is in memory it’s represented by
a tree of nodes. Each node may have siblings
(elements at the same level), children (ele-
ments at a lower level), or attributes. The term
walking the tree refers to processing each node
of the XML file starting at the root node and
moving on to all its children, attributes, and
siblings. Each time you reach a fork in the tree
you go down one of the branches, forking as
required until you reach the leaf nodes. At this
point you work your way back up the tree, vis-
iting any branches that haven’t yet been
processed. Although it sounds complicated,
using recursion makes it simple.

In Listing 2 an XML file is loaded into a tree-
view using a recursive function called
wf_parse_node. The arguments for this function
are the XML node to parse and the treeview item
to populate. Start wf_parse_node by giving it the
root node of the XML file and the root item in
the treeview. Use the “documentElement”
attribute to find the XML root node.

Populating a treeview recursively is pretty
cool, but if you’re developing a business appli-
cation you’ll probably want to do something
else with your XML file. The most likely alter-
natives are updating the database, invoking a
business rule object, writing to a file, or send-
ing an e-mail. The recursive method of walk-
ing the tree is very useful for finding the nodes
you require to carry out this processing.

DISCONNECTING
When you’ve finished processing one

or more XML files you need to disconnect
from the browser and tidy up. The Dis-
ConnectObject() function will terminate your

TABLE 1 XML parser properties

Property Description
Async Specifies if asynchronous download is permitted. When set to TRUE control

is returned before the XML document is loaded. (Recommendation = FALSE).
validateOnParse Specifies whether the parser should validate the document against the Document

Type Definition (DTD) when it’s parsed. (Recommendation = TRUE).

TABLE 2 Important parseError properties

Property Description
ErrorCode A number that identifies the type of error
Filepos The absolute position of the error in the file
Line The number of the line that contains the error
Linepos The character position of the error (on the error line)
Reason The reason for the error
SrcText The text of the line that contains the error

15www.PowerBuilderJournal.com PBDJ volume8 issue8

XML browser session. Make sure you destroy the
OLE object variable when you’re finished.

A Strange Thing About the XML
DOM Tree

There’s a feature of the DOM tree that can be
confusing. If you use the sample code to parse

the XML file shown at the beginning of this
article, the results aren’t what you would
expect. The resulting DOM tree is shown in
Figure 1. The labels show the node name and
its value in brackets.

The root node is called presentation and has
no value. It has one attribute node, a comment
node, and five child element nodes. The attribute
and comment nodes have values as you would
expect, however, the element nodes don’t have a
value of their own. The element’s value is stored
in a text child node. This strange behavior is logi-
cal if you think of elements as containers.
Elements may contain other elements, attribut-
es, comments, or data (stored in a child node).

As a workaround to finding the value of
an element, check if the first node in its child
node list is of type “TEXT”. In this case you
can assume that the text node is the value
for the element. A PowerBuilder example
that demonstrates how to code for this
is available on the PBDJ Web site,
www.PowerBuilderJournal.com.

In Part 2 I’ll discuss how JP Morgan was able
to develop an NT Service using PowerBuilder.

The service processes the XML messages from
IssueLink.

Resources
1. Birbeck, M., et al. (2001). Professional XML.

Wrox Press. This is the best XML book I’ve
come across.

2. A commercial site with good XML news:
www.xml.com

3. The XML industry portal: www.xml.org
4. The World Wide Web Consortium – good for

pure XML information: www.w3.org/xml
5. Microsoft’s XML page for developers – bit MS-

centric but quite good: http://msdn.
microsoft.com/xml

6. Information on Capital Net’s IssueLink sys-
tem: www.capn.com/issuelink ▼

AUTHOR BIO
Paul Donohue has 15 years’ experience as a solution provider. He has
worked with PowerBuilder since version 2 and is a Certified
PowerBuilder Developer.

pbdj@pauldonohue.com

// Declare an OLE object as a reference to the parser
oleobject lole_xml_document

// Identify the file to parse
string ls_filename = „C:\DEMO.XML„

// Create the OLE Object
lole_xml_document = CREATE oleobject

// Connect to the parser
// NOTE : This example uses the parser from IE5.
// Use the class name „MSXML2.DOMDocument.3.0‰
// for the latest version.
lole_xml_document.ConnectToNewObject("Microsoft.XMLDOM")

// Load the file into memory (this will parse it)
lole_xml_document.load(ls_filename)

// **
// THE XML FILE HAS BEEN PARSED AND IS IN MEMORY
// YOU CAN INVOKE PARSER METHODS TO MANIPULATE IT
// **
wf_parse_node(this function has some arguments)

// Disconnect from the XML parser
lole_xml_document.DisConnectObject()

// Destroy the OLE object
DESTROY lole_xml_document

wf_parse_node(node, treeview)

// Arguments
oleobject aole_node // The node to process
long al_treeview_parent // The treeview item to add
nodes to

// local variables
string ls_node_type // The type of the current node
string ls_node_name // The name of the current node
string ls_node_value // The value of the current node
oleobject lole_attribute_node_list // The attributes for
this node
oleobject lole_attribute_node // An attribute for this node
oleobject lole_child_node_list // The child nodes for this
node
oleobject lole_child_node // The current child node
long ll_max_attribute_nodes // The number of attribute
nodes
long ll_max_child_nodes // The number of child nodes
long ll_attribute_idx // A counter
long ll_child_idx // A counter
string ls_label // The label for the treeview

long ll_treeview // The newly inserted treeview item

// Determine the node's name, type and value
ls_node_name = aole_node.nodename
ls_node_type = Upper(aole_node.nodetypestring)
ls_node_value = String(aole_node.nodevalue)

IF IsNull(ls_node_value) THEN
ls_node_value = "<NULL>"

END IF

// Add this node to the treeview
// I am using a picture index of 1 however
// you could use the nodetypestring to determine
// the node‚s type and use an appropriate picture
ls_label = ls_node_name + " (" + ls_node_value + ")"
ll_treeview = tv_xml.InsertItemLast (al_treeview_parent,
ls_label,)

// If this node has attributes process them
lole_attribute_node_list = aole_node.attributes

IF IsValid(lole_attribute_node_list) THEN
ll_max_attribute_nodes = lole_attribute_node_list.length

ELSE
ll_max_attribute_nodes = 0

END IF

FOR ll_attribute_idx = 0 TO ll_max_attribute_nodes - 1
lole_attribute_node =

lole_attribute_node_list.Item(ll_attribute_idx)
wf_parse_node (ll_treeview, lole_attribute_node) /* RECUR-

SIVE */
NEXT

// If this node is an element and it has children process them
IF ls_node_type = "ELEMENT" THEN

lole_child_node_list = aole_node.childNodes

IF IsValid(lole_child_node_list) THEN
ll_max_child_nodes = lole_child_node_list.length

ELSE
ll_max_child_nodes = 0

END IF

FOR ll_child_idx = 0 TO ll_max_child_nodes - 1
lole_child_node =

lole_child_node_list.Item(ll_child_idx)
wf_parse_node(ll_treeview, lole_child_node) /* RECUR-

SIVE */
NEXT

END IF

Listing 2

Listing 1

!edoCehtdaolnwoD
The code listing for this article can also be located at

www.PowerBuilderJournal .com

FIGURE 1 XML DOM tree

